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Polynomial Formulation of Second 
Derivative Multistep Methods 

By S. Kowali* and G. K. Gupta 

Abstract. Following the work of Enright [3] there has been interest in studying second 
derivative methods for solving stiff ordinary differential equations. Successful implementa- 
tions of second derivative methods have been reported by Enright [3], Sacks-Davis [9], [10] 
and Addison [1]. 

Wallace and Gupta [ 13] have suggested a polynomial formulation of the usual first-derivative 
multistep methods. Recently Skeel [11] has shown the equivalence of several formulations of 
multistep methods. The work of Wallace and Gupta [13] was extended to second derivative 
methods by Gupta [8]. The present work includes results obtained regarding the stability and 
truncation error of second derivative methods using the polynomial formulation. 

1. Introduction. In this paper we extend the work of Wallace and Gupta [13] to 
include second derivative methods. Gupta [8] presented a polynomial formulation of 
second derivative methods and we study that formulation further. The present paper 
also discusses an erroneous result obtained in Gupta [8, Eq. (3.7)]. In addition, the 
present paper explores the relationship between the blended formulas of Skeel and 
Kong [12] and the second derivative methods of Enright [3] when Nordsieck 
representation is used. We also discuss some advantages of the polynomial formula- 
tion. 

Let the ordinary differential equations being solved be 

(1.1) y' = f(x, y), y(O) = Yo (y being a vector). 

The second derivative linear multistep- formulas may be represented as follows 
using the conventional representation 

k k k 

(1.2) Yn+l I aiYn+ I-i + h 2 Piyn'+-I _ + h2 Yin+l 
i=1 i=O i=O 

If all -yi are zero, then we get the usual linear multistep formulas. Enright [3] studied 
formulas which have all yi zero except yo and found stiffly-stable formulas up to 
order 9. Enright [4] presents another set of second derivative formulas which are 
stiffly stable up to order 7. The first set of Enright's formulas has been implemented 
by Enright [3], Sacks-Davis [9], [10], and Addison [1]. 

We first discuss the polynomial formulation in the next section. We then discuss 
analysis of stability in Section 3 and of truncation error in Section 4 if the 
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polynomial formulation is used. Section 5 deals with implementation of second 
derivative formulas using the Nordsieck representation. The following section looks 
at blended formulas and in Section 7 we present some new second derivative 
formulas using the polynomial formulation. 

2. Polynomial Formulation. Wallace and Gupta [13] present a polynomial formula- 
tion of the usual first-derivative multistep methods. This formulation has the 
advantage that it leads naturally to algorithms using the Nordsieck representation of 
multistep formulas. 

Gupta [8] extended the polynomial formulation of Wallace and Gupta to include 
second derivative methods. For completeness, we reproduce the example discussed 
in that paper and, in fact, we discuss it here in somewhat more detail. 

Example. The example deals with the following third order formula of Enright [3]: 

hh2 
(2.1) Yn+ Yn + ? (fn + 2fn+ - 6n+ 

The above formula has been derived by obtaining a polynomial approximation 

Pn+ l(x) of degree 3 to the solution such that 

(2.2) Pn+ I (Xn) f Yn Pn+ I (Xn ) =ftn 
Pn'+l(Xn+1) =Jn+1 Pn+ I(Xn + I) =fn+ 1 

We now briefly derive Pn+ l(x) because this leads to the polynomial formulation we 
are seeking. 

Let 

Xn+i= 0 h=1, and 

(2.3) Pn+I(x) an+?1 + bn+Ix + Cn+ 1X2 + dn+IX 3 

Applying the conditions (2.2) we get 

(2.4)~~~:_ an I (3Yn + fn + 2 fn+I 1- fn'+ 1), bnI= +1 
(2.4) 

n+ 2 + =nI 

cn+l fnl dn+l n=l 3(tfnJ+ I + fn+1), 

Now we can see that 

0 l) Yn+ = an+ l (3yn + fn + 2fn+ - 

which is the same as the third order formula (2.1) except that h - 1. 
We may also derive an expression for Pn(x) in a similar way and obtain 

Pn(x) = an + bn(x + 1) + cn(x + 1)2 + dn(x + 1)3 

where an, bn, . . . etc. are the same as an+ I S bn?+ 1, . . . etc. defined in (2.4) except that n 
is replaced by n - 1. We are interested in finding Pn+ (x) - Pn(x) because this 
leads to the Nordsieck polynomial representation. Let us say that 

(2.5) Pn+?(x) Pn(x) + Cn+?(x). 

Then we get 

Cn+?(x) = (an+1 - an - bn- Cn- dn) + (bn+l - bn- 2cn- 3dn)x 

+ (cn+ - Cn- 3dn)X2 + (dn+1 -dn)X 

= aO,n+l + al,n+Ix + a2,n+Ix2 + a3,n+Ix3 (say), 
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where 

a 0,n + YnYn-1+ 3( 2 fn-I 3fn + 2 fn +l -2fn' - fn + I) , 

al,n+ fIn-I +fn+l -2fn 

2,n+= I (-2fn-I + 2fn - 3fn ?fn+, ) 

a3,+ I ( fn-I + 2fn fn+? fn +?fn?) 
We can eliminateyn - yn from the above expression for a0? n+ by using (2.1). Now 
we may rewrite Cn+ (x) if we note that 

a ](2a2?- a,?), a0,? - ]-(2a1?- - a3,n+l = 3 (22,n+ I ,n+1), aOn+l I 3 (2ln+ I 2,n+1), 

and therefore 

(2.6) ( 3 3 3 2 6 

It is easy to check that 

Cn+l(Xn) = Cn'+I(Xn) = O since Xn=-1 

Also we note that the above expression for Cn+ l(x) is equivalent to the representa- 
tion of Gupta [8, Eq. (2.5)], which defines 

(2.7) p(t) = 2 + t-It3, q(t) = -1 + 1t2 + It3 

where t = (x - xn+ )/h. The polynomials p and q are the same as in (2.6) above 
because we had assumed xn+ I = 0 and h = 1 and therefore t = x. 

The above example shows that the second derivative formulas may be expressed as 

(2.8) Pn+1(x) = Pn(X) + 31,n+Ip((x - Xn+I)/h) + 82,n+lq((x -Xn+l)/h), 

where p and q are constant polynomials representing the second derivative formula. 
Polynomials p and q corresponding to formulas of order greater than three of 
Enright [3] are presented in the Appendix. 

The scalars 1, n+ l and 82, n+ are chosen to satisfy the differential equation at xn+l 
and the second derivative condition. That is 

(2.9) 
~~Pn+ l(Xn+ l) =f(Xn+ I Pn+ (Xn+ I* 

(2.9) Pn+?(xn+?) =f(xn+?, Pn+?(xn+?)) 

In [8, Eq. (2.5)] a formulation very similar to (2.8) is used. The only difference is 
that [8] uses the symbol ?n+l instead of 8i,n+ 1 and defines 82,n+ l of (2.8) above as 

us, n + Comparing Eq. (2.6) with [8, Eq. (2.5)], we obtain 

(2.10) 2a2 n+ - 2fn-I + 2fn - 3fn' + fn+ 
al,n+l fn -I ? fn +I - 2 fn 

for the third order formula (2.1). The above expression for u does not seem to be 
equal to h af/ay as claimed by Gupta [8, Eq. (3.7)]. 

We have followed a somewhat tedious approach above to obtain expression (2.6) 
for Cn+ (x). The reason for this was to obtain the expression (2.10) for u. An easier 
approach is possible by observing that 

Cn+I(Xn ) = Pn+l(Xn 
- 

Pn(xn) 0 
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and 
Cn+I(Xn ) = 

Pn+I(Xn) 
- 

Pn(Xn ) 0 

and therefore 

Cn +l (x) = (linear polynomial) * (x-Xn )2 

which may be written as 

Cn+1(xn+l + th) - ?1n+IP(t) + 82,n+1q(t), 

where p(t) and q(t) are independent cubic polynomials satisfying p(-1) = 
q(- 1) 0 O and p'(- 1) = q'(- 1) = 0. For convenience we require that p'(O) = 1, 
p"(O) = 0 and q'(O) 0 O, q"(O) = 1, which gives the same polynomials as (2.7) 
above. 

We shall look at some of the implementation details of the second derivative 
methods in Section 5, but we first consider how the polynomials p and q in (2.8) are 
related to the coefficients ai, 83 and yi of the conventional representation (1.2). We 
do this by analyzing the stability of the second derivative formulas using the 
formulation (2.8). 

3. Analysis of Stability. The stability region associated with the second derivative 
k-step formula (1.2) is defined by the characteristic polynomial 

(3.1) a(r) - hA,8(r) - (hX)2y(r) O, 

where 
k k k 

(3.2) a(r) =rI - 2 a1rki, :(r) r fiar,r', y(r) = yirk . 
i= I i=O i=O 

Using the polynomial formulation (2.8), the polynomials a(r), /8(r), y(r) are not 
immediately known. Under the hypothesis that (2.8) is the polynomial formulation 
of some second derivative k-step formula (1.2), we will derive an expression for the 
characteristic polynomial (3.1) in terms of the polynomials p and q of (2.8). We 
follow an approach similar to that of Wallace and Gupta [13] and Gupta [7] for the 
usual multistep methods. 

In studying the stability we are concerned with the behavior of the numerical 
solution yn as n -x oo. If the differential equation y' = Ay is solved using the second 
derivative method of order m, the approximating polynomial at x = 0 is given by 
(assuming constant step-size) 

0 0 

(3.3) PO(X) = 2sIiP( h )+ 2,q( h ) 
i=-00 i=-01 

We need to know 81i and 82i at each step to obtain an expression for PO(x). 
Let hA satisfy (3.1) for j r j> 1. Equation (3.1) now defines hA as an algebraic 

function of r for I r I> 1. We have that yn = rn is a numerical solution for y' = Ay. 
For such a solution the corrections A1,n and 82,n must also be proportional to r'. Due 
to this proportionality, we may express 81,n and 82,n as follows: 

(3.4) 8i,n K1rn and 82,n = K2rn. 

Substituting in (3.3), we have 
0 l \ h 0 + - x 

j=_00 
h ~~i=-0oo 
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Now let 

p(x) = do + d1x + d2x2 + *. +dmxm, 

q(x) = eo + e,x + e2x2 + . +emxm. 

Equation (3.5) now becomes 

(3.7) Po(x) = 2 Kr d(XX) 0 K2reje he). 
i=-oo j= i-0o ]=0 h 

We now reverse the order of summation and obtain 
m 00 ~~~~~~~m 

(3.8) Po(x) =K 
m 

dj 
0 

r({g + + K) :: ej ( h + 
j=O i=O j=O i=O 

and therefore 

(3.9) P0(o) = KIG + K2H, 

(3.10) Po(0) = KIR + K2S, 

(3.11) Po (O) = K IT+ K2U, 

where 
m m 

G djVj(r), H= 2 ejVj(r), 
j=0 j=O 

(3.12) m m 
R =2 jdjVj- l(r), S = 2 jejVj- l(r), 

j=l j=l 

and 
m m 

T= 2 1(- 1)djj-2(r), U= 2 (i- 1)ejVj?2(r). 
j=2 j=2 

Vj(r) is defined in the same way as in [13] 
m 

(3.13) Vj(r) = 2 r-ij. 
i=O 

This may be evaluated from the recurrence relation 

Vj(r) = 1 (i V,(r) and Vo(r) = r r- 1 _ \ss r- 1 

Po(x) is the polynomial approximating the solution at x = 0 and so satisfies the 
differential equation and the second derivative condition at x = 0. That is, for the 
differential equation y' = Ay, we have 

(3.14) P?(o) = hAP0(0), Po'(o) = (hX)2Po) = hXPO(0). 

Substituting for P0(O), P0'(0) and P''(0) from (3.9) to (3.13), we have 

(3.15) KIR + K2S = hX{K1G + K2H}, KIT+ K2U = (hA)2 {KIG + K2H}. 

Eliminating K1 and K2 from the above two equations gives the following: 

(3.16) (ST - UR) + hA(UG - HT) + (hX)2(HR-GS) = 0. 
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Cancelling the common factor (say F) and comparing with (3.1) gives 

ST1- UR UG-HT y(r)= HR-GS 
(3.17) a(r) F '1() 

Example. We again consider the example of the third order formula (2.1). The 
polynomials p and q in (2.7) are represented by vectors 

(3.18) p 21 0 - 3]I q = I[-6 ?, 2', 3] 

Therefore we have 

G 2 r2(r2-2r-2) H r2(-r2 + 8r + 5) 
G3 (r 1) 

4 ,6H_ 
6( 

1)4 

(3.19) R - r2(r - 1)(r - 3) 2r (r - 1) 

T= 2r(r-1)2 U r(r-1)2 (r + 1) 

(r -1) , (r-) 

Substituting these values in (3.16) and eliminating the common factor F = 
r3/(r - 1)4 gives the characteristic equation 

(hA)2(- _) +hX(2r+ 1) 
-(r- 1) = O, 

6 ~~~3 
which is identical to the characteristic equation of formula (2.1). 

We have therefore shown the relationship between polynomial formulation (2.8) 
and the conventional formula (1.2) of second derivative methods. Before discussing 
an implementation of second derivative methods we note that when a second 
derivative method is expressed using formulation (2.8), its truncation error coeffi- 
cient may also be computed directly using the formula in the next section. 

4. Truncation Error. To obtain an expression for the local truncation error 
coefficient Km+ I for a method of order m, we follow an approach similar to that of 
Wallace and Gupta [13] for polynomial representation of the usual multistep 
methods. 

We omit the details of the derivation and present only the resulting formula. Let 
the corrector polynomials p and q be given by (3.6). The truncation error coefficient 
Km+I is then given by 

aO + a1s1 + * +amsm 

m!am 

where si is the coefficient of n in the summation l j= , ai = di + Qei; di, ei being 
the coefficients of polynomials p and q and 

= d+ 2d2s1 + *+mdmsm-I 
el + 2e2sI + *. +memSm-1 

(The numbers si are the Bernoulli numbers. We have so 1, s, - , s2 - 6' 

s4 -30, etc. ands2n+1 = O, n = 1,2,....) 

5. Implementation. Gupta [8] has discussed the implementation of second deriva- 
tive methods using the Nordsieck representation. We present further details of the 
implementation, particularly about the corrector iterations. 
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The predictor-corrector algorithm for second derivative methods may be written 
as 

(5.1) an+l = Aan + d81 + e82, 

where d and e are vectors of scaled derivatives of polynomials p((x - xn+ 1)/h) and 
q((x - xn+l)/h) of (2.8) at xn+,. an+1 and an are vectors of scaled derivatives of 
approximating polynomials Pn+,(x) and Pn(x) of (2.8) at xn +I. We note that the 
above representation is similar to the Nordsieck representation of the usual multi- 
step method as discussed by Gear [5, p. 216]. 

8A and 82 in the above representation are computed by satisfying the differential 
equation and the second derivative condition at x,,+I as given by (2.9) and must be 
computed by an iterative scheme. We discuss one possible iterative scheme here. 

Let b = A a and b be the ith element of b. Similarly let di and ei be the ith 
elements of d and e. In our representation, d2 = e i = 0 and d2 = 1, e2 = 2. Now the 
conditions (2.9) to compute 8, and 82 may be written as 

b, + 81 - hf(Xn+1, bo + do08 + e082) - 0, 

(5.2) b2 + 82 h2Jf(xn+I, bo + doSI + e082) = 0. 

We have assumed f' -Jf (if af/ax = 0). From the above two equations we get 

(5.3) 82 = (hJb1/2 - b2) + hJ81/2. 

Substituting for 82 in the first equation of (5.2), we get the following equation: 

(5.4) bb +81 -hf(xn+1,bo+ eo(hJb1/2-b2) + (do + he0J/2)81) = 0. 

In the above equation J depends on 81 and 82 since J = J(bo + do08 + e082). If we 
are able to solve this equation and obtain 81, we can compute 82 using (5.3). To solve 
(5.4), we need to use the Newton method as modified by Liniger and Willoughby [6] 
and Enright [3]. We obtain the following iterations 

_b + 8r -hfr 

I - hJ(do + Jheo/2) 

where 8l is the r th approximation of 8, and 

fr f(xn+ I bo + eo(Jrhb/2 -b2) + (do + Jrheo/2)8I). 

If we put 

(5.6) W I - hJdo - h2J2e0/2, 

we may rewrite (5.5) as 

(5.7) w(81+'-Al) = -bl8 + hfr. 

Note that these iterations are somewhat different than those obtained by Gupta [8]. 
Once 8, is computed, we an compute 82 and obtain vector an+ I of (5.1). 

Computing W requires computation of J2. Several ways of avoiding this are 
discussed by Skeel and Kong [12]. 

6. Blended Multistep Formulas. We now compare our representation with the 
blended methods approach of [12]. It has been shown by Skeel and Kong [12] that a 
"blend" of the (k + l)th order Adams-Moulton formula (AMF) and kth order 
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Backward Differentiation Formula (BDF) becomes identical to the second derivative 
formula of [3] of order k + 1 for the equation y' = Xy. 

In the Nordsieck notation the blended formula is given by 
(6.1) an = Aan- 1 + (w - h-yJnz)A/n 

where an, an1 are vectors of scaled derivatives of the approximating polynomials, w 
is the correction vector corresponding to AMF of order k + 1, and z to BDF of 
order k. 

In polynomial notation the above formula is given by 

(6.2) Pn(x) Pn-1(x) + (A(t) - yhJnB(t))An, 
where A and B are modifier polynomials and t = (x - xn)/h. Comparing the above 
equation with Eq. (2.8), it would be expected that if (6.2) is to be equivalent to 
Enright's forinulas for some y, then we should have 

Pn(Xn1)= Pn(xn1) =yn-l and Pn(Xn-1) = Pn(Xn-1) =fn-1 
Therefore we should have 

A(-1) =B(-1) =0 and A'(-1) =B'(-1) =0. 

In the blended formulas we note that the condition B'(- 1) = 0 is not satisfied, that 
is, Pn(Xn- 1) Pn- (Xn- 1). Another difference between the Nordsieck representation 
(6.1) of blended formulas of order m and (5.1) of second derivative formulas of order 
m is that (6.1) is an m-value method based on (m - 1) degree polynomials while 
(5.1) is an (m + 1)-value method based on m degree polynomials. 

It is therefore not obvious that the blended formulas are equivalent to Enright's 
formulas for y' = Jy when the Nordsieck representation is used. 

7. New Fonnulas. As we have already discussed in Section 2, using the formulation 
(2.5), polynomial Cn + (x) can be obtained in terms of the two polynomials p and q 
for the second derivative formulas of Enright [3] by requiring that 

Cn+ (Xn) = Cn+1(Xn) = 0 

and, in addition, 
Cn'+ I(Xn-i) = for i =l ...,gk-1I 

for a k-step formula of order k + 2. To obtain the polynomial p and q we require 
that 

p(-1) =q(-1) =0 and p'(-i) q'(-i) =O, i 1,2,...,k, 

and, in addition, choosing p'(O) = 1, p"(O) = 0 and q'(0) = 0, q"(0) = 1. 
New sets of formulas may be obtained by choosing Cn+ ,1 to approximate zero for 

values x - xn in other ways. We have tried three different approximations and the 
following sets of formulas were obtained. 

(1) Set 1. This set of second derivative formulas was obtained by requiring 
Cn+, (x) to satisfy the following conditions: 

Cn+I(Xn-i) = 0' i0=O,19. .. ,k-1I. 

The above conditions lead to k-step formulas of order k + 1. The polynomial p and 
q of (2.7) may be obtained by requiring that 

p(-i) = q(-i) = O fori= 1,2,...,k, 
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and, in addition, 

p'(O) = q"(O) = 1 and p"(O) = q'(O) = 0 
as before. These formulas could be called second derivative BDF because of the 
backward differentiation conditions which are satisfied by the formulas. The for- 
mulas are stiffly-stable up to order 11. 

(2) Set 2. This second set of formulas was obtained by requiring C,+ l(x) to satisfy 
the following conditions 

Cn'+(xn) = 0 and Cn+1(Xn-i) = i=0 , 1,...,k-1. 

This leads to k-step formulas of order k + 2 stable up to order 8. The polynomials p 
and q may be obtained by requiring 

p'(-1) = q'(-1) =0 and p(-i) = q(-i) = 0, i = 1,2,...,k, 

and the same conditions as before for t = 0. 
(3) Set 3. This set was obtained by requiring Cn+, (x) to satisfy the following 

conditions 

Cn+I(Xn-i) = Cn+(Xn-) = 0 i = ,1,...,k-1. 

This leads to k-step formulas of odd order 2k + 1. To obtain even order formulas 
we decided to let Cn+,(Xn-k+l) =# 0. This leads to k-step formulas of even order 2k. 
Formulas were stable only up to order 7. 

Stability curves and truncation error for the above sets of formulas were computed 
using the results of Sections 3 and 4. The results are summarized in Table 1 which 
gives the truncation error coefficients Km+I and stability parameters a and D for 
each of the three sets of formulas described above and the formulas of [3]. For 
definition of stability parameters a and D, see [5, p. 219]. 

TABLE 1 
Stability parameters and truncation error coefficients 

of four sets of second derivative formulas 

Enright's Formulas Set 1 Set 2 Set 3 

ORDERr- 
K OD j D | |1 D K a D K m+1 D 

2 _ _ - 0.17 A - Stlble 0.17 A - Stable _ _ 

3 0.14E-1 A - S able 0.55E-1 A - St Ible 0.14E-1 A - St ble 0.14E-1 A - St ble 

4 0.49E-2 A - S able 0.27E-1 A - St ble 0.37E-2 A - St ble 0.49E-2 A - St able 

5 0.24E-2 87.9 -0.10 0.16E-1 89.4 -0.15E-1 0.14E-2 86.1 -0.23 0.74E-3 82.8 -0.51 

6 0.14E-2 82.0 -0.53 0.10E-1 86.4 -0.13 0.67E-3 77.4 -0.96 0.25E-3 69.7 -1.80 

7 0.86E-3 73.1 -1.34 0.73E-2 80.8 -0.40 0.36E-3 64.4 -2.17 0.51E-4 46.8 -5.53 

8 0.59E-3 60.0 -2.72 0.54E-2 72.5 -0.88 0.21E-3 43.2 -3.86 Unstable 

9 0.42E-3 37.7 -5.18 0.41E-2 60.8 -1.65 Unstable 

10 Unsta le 0.32E-2 43.4 -2.77 

11 0.26E-2 12.5 -4.37 

12 Unstab.e 
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8. Conclusions. We have shown the relationship between a polynomial formulation 
of second derivative formulas and their conventional representation. This is useful in 
deriving new sets of second derivative formulas and investigating their stability. We 
have derived some new sets of formulas and the results are encouraging. 

Also as indicated by Gupta [8], the polynomial formulation presented here could 
be used for computing variable-step formulas if necessary. 

We have also shown that it is not at all obvious that for the problem y' - Jy 
blended formulas of Skeel and Kong [12] are equivalent to Enright's formulas when 
Nordsieck representation is used. 

Acknowledgement. We are grateful to an anonymous referee for a thorough review 
of this paper. 

Appendix. Vectors of scaled derivatives of corrector polynomials p and q in (2.8) 
or the correction vectors d and e of (4.1) for the second derivative formulas of 
Enright [3] are given here. (di, ei are the ith elements of d and e.) 

TABLE Al 
Coefficients of the correction vectors d (d, = 1, d2 = 0) 

ORDER= 4 5 6 7 8 9 

29 307 3133 3177:11 247021 1758023 
d0 48 540 5760 6048\, 483840 3528000 

7 85 415 12019 13489 726301 
d3 ~ 12 108 432 10800 10800 529200 

d 3 5 755 343 16219 9743 
d4 - 16 12 1152 384 14400 7200 

11 119 2149 6503 311821 
180 720 7200 14400 504000 

25 133 1631 119 
d6 ~ 1728 2880 - 17280 - 756 

d ~~~ ~~~~~137 1009 3069 
d7 l 5040 | 100800 -32800 

4d 
49 179 

d8 115200 100800 

9 2116800 
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TABLE A2 

Coefficients of the correction vectors e ( e1 = 0, e2 = 4) 

ORDER= 4 5 6 7 8 9 

e1 19 _3 _863 2 75 3395 3 e0 1 8 180 32 10080 3456 453600 

1 e3 | X T 11 25 137 147 1089 
3 2 18 36 180 180 1260 

e4 1 1 35 15 203 469 e4 8 96 32 ~~~~~~~~36072 

1 1 17 147 967 
e5 30 12 120 720 3600 

1 1 175 49 
e6 I I IT144 48 4320 756 

1 1 23 
e7 ~~~~ ~~~~~840 24 

1 7 
e8 55760 10080 

1 
e9 45360 
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